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Executive Summary

FinlyWealth is an affiliate marketing platform that rewards customers for applying for financial
products. It is now looking to expand its business by offering e-commerce products through
its platform. To support this transition, a team of Master of Data Science students from the
University of British Columbia has developed a fast and scalable multimodal search engine
that allows users to search using text, images, or both, to find the most relevant products.
The final product delivers product discovery by leveraging semantic understanding, enabling
more accurate and relevant search results beyond simple keyword matching.

Our retrieval pipeline combines multimodal CLIP (Radford et al. 2021) embeddings with
text-only MiniLM (Face 2024) embeddings, indexing them using FAISS (Johnson, Douze, and
Jégou 2017) for efficient large-scale similarity search. At query time, the system identifies
semantically relevant products by retrieving similar items from the index and then applies an
LLM-based (OpenAI 2023) reranking module to refine the ranking. The architecture consists
of a Streamlit (Streamlit Inc. 2019) frontend, a Flask-based (Ronacher 2010) API backend,
and a vector database(Kane 2021) that supports embedding-based retrieval. The system ef-
fectively handles complex natural language and multimodal queries, a common challenge in
e-commerce search. Quantitatively, we observed a Recall@20 of 0.56, Precision@20 of 0.64,
and an average query time of 4.24 seconds over a dataset of one million products. Our data
product provides a reproducible pipeline that allows FinlyWealth to index new items, evaluate
system performance, and support semantic search for future e-commerce offerings.

1 Introduction

As FinlyWealth expands its offerings from personal finance into the e-commerce sector, it faces
the challenge of delivering a scalable and effective product search experience across a rapidly
growing and diverse catalog. To address this, a team of Master of Data Science students at the
University of British Columbia is developing a machine learning-powered multimodal search
engine that understands the semantic meaning of user queries, handling both text and image
inputs to help users find relevant products more intuitively and efficiently.

Search in the e-commerce domain presents unique challenges due to the wide variety of ways
users express their search intent. Traditional approaches, such as TF-IDF-based text search,
work well for simple queries like “iPhone” or “laptop.” However, most user queries are free-
form, complex, and infrequent. The existing system relies on basic keyword matching, lacks
semantic understanding, struggles with spelling mistakes, and does not support multimodal
inputs or large-scale performance evaluation.
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1.1 Objective

To address these gaps, this project designed and implemented a fast, scalable multimodal
search system that captures semantic meaning of user queries and returns the most relevant
products to the users. Architecture components include:

Table 1: Summary of Client Requirements and Our Solutions

Client Requirement Our Solution
Support for natural language
and multimodal queries

Combined CLIP (image-text) and MiniLM (text-only)
embeddings; LLM-based reranking for semantic relevance

Fast response time Indexed embeddings using FAISS for efficient
approximate nearest neighbor search

Reusable API endpoints Developed modular backend with Flask APIs
Reproducible data pipeline Designed modular indexing, query search, and evaluation

pipelines, automated via make
Web interface for user
interaction

Built a user-friendly interface using Streamlit

Transparent evaluation and
benchmarking

Proposed evaluation plan: Recall@20, Precision@20
(human-judged), and query time

To support scalable data storage, we use PostgreSQL with the pgvector extension, providing
an affordable and efficient solution for storing embeddings and associated metadata.

The final data product is evaluated using the following evaluation metrics:

• Recall@K: Measures how often the intended or relevant product appears in the top K
retrieved results

• Precision@K: Measures how many of the top K retrieved products are actually relevant,
based on manual human relevance assessments

• Query time: Measures how long each query takes to return results (target <= 5 seconds)

2 Data Science Methods

2.1 Data Source, Description and Cleaning

The dataset consists of multimodal product data, including images (14,684,588 JPEG files,
approximately 67 GB), textual information (product names and descriptions), and structured
metadata (e.g., Category, Brand, Color). The metadata is stored in a 12 GB CSV file
containing 15,384,100 rows and 30 columns.
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After conducting exploratory data analysis and consulting with our partner, we selected the
16 most relevant columns that capture the key information users care about. We excluded
non-English market entries—retaining approximately 70% of the dataset—in line with our
partner’s business focus. Additionally, we merged the Brand and Manufacturer columns into
a single MergedBrand field to reduce duplication while preserving distinct brand information.
We chose to ignore missing values in the metadata columns, as these fields are likely to pro-
vide supplementary information, while the product name already contains the primary details
(Table 2).

Table 2: Summary of Retained Columns and Their Characteristics

Group Attribute Description / Examples
Identifiers Pid Unique product ID; links to image filenames
Text Fields Name Product title (0.2% missing)

Description Product description (0.03% missing)
Category Product category (28% missing; ~15 K unique

values)
Pricing &
Availability

Price Listed price

"PriceCurrency"Currency of the price
FinalPrice Final price after discounts
Discount Discount percentage or value
isOnSale Boolean flag
IsInStock Boolean flag

Branding Brand Brand name (53% missing; ~21 K unique values)
Manufacturer Manufacturer name (34% missing; ~26 K unique

values)
Product Features Color Product color (49% missing; ~170 K unique

values)
Gender Target gender (54% missing; 3 values: e.g.,

male/female)
Size Product size (46% missing; ~55 K unique values)
Condition Product condition (e.g., new, used; 5 values)

Given the timeline for this project, we’ve selected 1M dataset out of the 15M to build the final
data product.
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2.2 Indexing Pipeline

Our goal was to develop a multimodal search engine capable of delivering relevant product
results for a wide range of customer queries. To support this, we designed a system that encodes
product data with both text and image understanding and enables scalable retrieval of similar
items. The system incorporates TF-IDF for keyword-based matching, CLIP for aligning visual
and textual information, MiniLM for efficient semantic text encoding, and FAISS for scalable
vector similarity search. This pipeline (Figure 1) is then used to convert the 1M product data
into indices that can be searched.

Figure 1: Indexing Product Data

2.2.1 Cleanind Data

The dataset was filtered to include only products priced in USD, CAD, or GBP, ensuring that
associated metadata—such as product descriptions—is predominantly in English. Additionally,
the Brand and Manufacturer fields, which contained largely redundant information, were
consolidated into a single column to reduce duplication and improve consistency.

2.2.2 Generating Embeddings

Our embedding strategy was inspired by Liu and Lopez Ramos (Liu and Lopez Ramos 2025),
who combined CLIP and a BERT model fine-tuned on e-commerce data to enhance product
search relevance. Since we lacked access to labeled, domain-specific data for fine-tuning, we
opted for MiniLM (Face 2024)—a smaller, faster transformer model that performs well out-
of-the-box and provides solid semantic understanding. We generate embeddings using both
CLIP (for image-text alignment) and MiniLM (for textual metadata), then concatenate them
into a single unified embedding, which is stored in a vector database for retrieval.
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2.2.3 Clustering Generated Embeddings

To support scalable and efficient retrieval, we leveraged FAISS, a library optimized for fast
similarity search and clustering of dense vectors. We tuned key hyperparameters to determine
the optimal number of clusters (nlist) and the number of clusters to probe during search
(nprobe). We selected 10,000 clusters, as it provided similar best performance as shown in
Figure 2. During retrieval, we search across the top 32 clusters, striking a balance between
speed and recall. Using an Inverted File Index (IVF), we clustered 1 million products into
10,000 groups, with each product assigned to its nearest centroid. At query time, FAISS
limits the search to the most relevant clusters, significantly improving search efficiency over
exhaustive approaches.

Figure 2: Hyperparameter Seach for FAISS Cluster Size

2.2.4 Processing Metadata Text

In addition to vector-based methods, we implemented a traditional keyword-based search using
TF-IDF, which ranks products based on the relevance to the query. Product descriptions and
attributes are processed into tsvector format and stored in a PostgreSQL database. A tsvector
is a specialized data type for full-text search in Postgres that tokenizes text into lexemes (root
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word forms) and removes stopwords, enabling fast and accurate query matching through the
tsquery syntax (PostgreSQL Global Development Group, n.d.).

2.3 Search Pipeline

2.3.1 Generating Query Embeddings

When a search query is submitted, we process it in two forms: the raw text and its correspond-
ing embedding. The raw text is used for traditional full-text search, while the embedding is
used for vector-based retrieval. Each method returns a ranked list of results, which are then
combined using a weighted scoring system. To further enhance relevance, we apply a Large
Language Model (LLM) to rerank the top results based on deeper semantic understanding
(Figure 3).

Figure 3: Workflow for a Search Query using Text only or Text & Image

For image-only queries, the full text search and LLM reranking step is skipped since there are
no text inputs to use (Figure 4).

Figure 4: Workflow for a Search Query using Image only
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2.3.2 Reranking with a Large Language Model (LLM)

The LLM plays a key role in improving result relevance by reranking the initial set of retrieved
products. It helps interpret the user’s intent and refines the rankings based on multiple criteria,
including:

1. Semantic similarity to the query intent
2. Direct keyword matches
3. Mentions of specific brand names
4. Price relevance compared to similar items

Reranking is particularly important because embedding retrieval could return items that are
broadly relevant but lack fine-grained alignment with the user’s actual intent. LLMs offer
a more nuanced understanding of both the query and the retrieved content, enabling more
accurate prioritization of results. This is particularly useful for natural language queries,
where the user’s intent may be complex or not explicitly stated.

For example, if a user searches for “a cheap office chair for home use,” the user has not
explicitly specified a price point and the initial results may include a mix of premium and
budget options. An LLM can interpret “cheap” as a key signal and evaluate product prices
within the context of similar items. It can lower the ranking of high-end chairs and highlight
budget-friendly options that better reflect the user’s intent, which embedding retrieval might
not account for.

2.4 Evaluation

This project focused on improving search performance for natural language queries, where
traditional keyword-based methods often fail. We compared three configurations: Text Search
(baseline), Text + Embeddings, and Text + Embeddings + LLM. The three configurations
were evaluated on Recall@20, Precision@20, and Search Time. A summary of evaluation
results is provided in Table 3.

Table 3: Evaluation Summary

Method Query Type Recall@20 Precision@20 Search Time (s)
0 Text Search Basic Query 0.42 0.73 0.30
1 Text + Embeddings Basic Query 0.33 0.81 0.60
2 Text + Embeddings + LLM Basic Query 0.41 0.78 4.24
3 Text Search Natural Query 0.07 0.07 0.30
4 Text + Embeddings Natural Query 0.53 0.70 0.60
5 Text + Embeddings + LLM Natural Query 0.58 0.62 4.24
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2.4.1 Recall

Recall@20 is calculated based on whether the specific target product being searched for appears
within the top 20 retrieved results. This evaluation reflects whether the system is able to
surface the exact intended product, which is particularly important for e-commerce use cases
where users often look for a specific item.

Recall saw the most improvement for natural queries, the primary focus of this project. The
baseline Text Search method retrieved only 7% of relevant results, underscoring its limitations
for conversational input. By adding semantic embeddings and LLM reranking, recall was
increased to 58%. This highlights the LLM’s ability to recover more relevant items beyond
those matched by keywords or nearest-neighbor search.

2.4.2 Precision

Precision@20 measures the proportion of the top 20 results that are relevant to the query, based
on human judgment. It reflects the ranking quality—how many of the returned products are
actually useful to the user.

Precision also improved substantially for natural queries, rising from 7% with baseline Text
Search to 70% with Text + Embeddings, and 62% with the LLM-enhanced pipeline. The slight
drop in precision with the LLM is likely due to the subjective nature of our evaluation process.
In the absence of labeled ground truth, relevance was manually assessed by team members using
their own judgment. Without standardized annotation guidelines, this introduces variability
in what is considered “relevant”.

2.4.3 Search Time

Search time captures the total time taken to process a query and return results. It helps
evaluate the responsiveness of the system under different configurations.

Search time increased as more complex processing was introduced. The LLM-based reranking
step added significant overhead, bringing total query time to 4.24 seconds. This additional time
is due entirely to the reranking process, where the LLM semantically evaluates and reorders
the top results. Overall, we are still under the target time of 5 seconds.
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3 Data Product and Results

The data product is comprised of preprocessing scripts, a frontend interface and a backend
API.

3.1 Indexing Pipeline

The indexing pipeline involves data cleaning, followed by embedding generation, database
loading, and finally, FAISS index generation. This process is initiated via the make index
command, which executes the aforementioned steps to prepare the products for contextual
querying. The pipeline executes its steps in the following sequential order:

• clean_data.py: Cleans the raw CSV data by removing null values, filtering for English
products etc.

• generate_embed.py: Generates embeddings from product names using MiniLM (Wang
et al. 2020) and from images using CLIP (Radford et al. 2021), respectively.

• load_db.py: Loads these generated embeddings and associated product metadata into
the PGVector database.

• compute_faiss_index.py : Compute the FAISS indices for faster search.

3.2 Frontend Interface

The Streamlit-based frontend serves as an internal tool for evaluating the quality of search
results and testing the underlying API. It supports a range of query types—including text-
only, image-only, and multimodal inputs. The interface also provide summary statistics on the
retrieved results.

Key Features:

1. Multimodal Input: Supports both text queries and image uploads as seen in as [1] in
Figure 5

2. Rich Results Display: Product cards with images, prices, and detailed metadata

3. Analytics Dashboard: Live statistics on search results including price ranges, brand
distribution, category breakdowns and LLM reasoning as seen as [2] in Figure 5

4. User Experience Design:

• Progressive result loading (20 results initially, expandable)
• Visual feedback for user interactions (Precision). This is the thumbs up and thumbs

down button labelled as [4] as seen in Figure 5. These results are collected and are
used in calculating precision metrics.
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Figure 5: User Interface

3.3 Backend API

The Flask-based (Ronacher 2010) REST API serves as the core processing engine:

Endpoints:

• POST /api/search: Main search functionality supporting text, image, and multimodal
queries

• GET /api/ready: Health check and initialization status

• POST /api/feedback: User feedback collection for continuous improvement
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Query Workflow:

Figure 6: Search Workflow

Our query workflow starts with passing the search query to the API. This is followed by Embed-
ding Generation, which creates appropriate vector representations. Next, a Hybrid Retrieval
step combines both vector similarity and full-text search for comprehensive results. Subse-
quently, LLM Reranking, utilizing models like OpenAI GPT, optimizes the relevance of the
retrieved information. Finally, the top retrieval results are sent back to the frontend.

3.4 Database and Storage

The system’s data infrastructure is built on Google Cloud. Product metadata and embeddings
are stored in a PostgreSQL database with the pgvector extension on Cloud SQL, primarily
for retrieval and indexing purposes. Similarity search is performed using FAISS indices, which
are stored on Google Cloud Storage alongside product images. This storage setup is highly
scalable, making it easy to accommodate growing volumes of product images and embedding
indices as the catalog expands.

3.5 Strengths and Limitations

This section outlines the core strengths and current technical constraints of the search system.
While the architecture is designed for flexibility, speed, and multimodal support, certain trade-
offs exist due to reliance on pre-trained models and resource requirements.
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3.5.1 Key Advantages

1. Multimodal Capability: Unique ability to process both text and image queries simul-
taneously

2. Hybrid Search Architecture: Combines vector similarity with traditional full-text
search for improved recall

3. Scalable Design: FAISS indices enable sub-second search across millions of products
4. Flexible Model Integration: Supports multiple embedding models and LLM

providers

3.5.2 Technical Constraints

1. Model Dependencies: Relies on pre-trained models that may not be domain-specific.
No training done

2. Memory Requirements: Large embedding matrices require significant RAM and stor-
age for optimal performance

3. Single-Language Support: Currently optimized only for English queries
4. Update Propagation: Adding new products requires recomputing embeddings and

rebuilding indices

3.6 Potential Improvements and Implementation Challenges

As the system evolves, several enhancements can be explored to boost retrieval accuracy,
scalability, and user relevance. This section highlights key opportunities identified through
initial experimentation and outlines the potential benefits of each, along with the practical
challenges they present.

3.6.1 Advanced Keyword Extraction with KeyBERT

• Improvement: Implement KeyBERT for automatic keyword extraction to enrich text
embeddings. This was explored and improved the recall score

• Benefits: Better understanding of product attributes and user intent
• Implementation Challenge: Requires additional compute resources for keyword pro-

cessing

3.6.2 Premium Embedding Models

• Improvement: Upgrade to OpenAI’s text-embedding-3-large or similar high-
performance models

• Benefits: Superior semantic understanding and cross-domain generalization
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• Implementation Challenge: Significantly higher API costs and embedding size

3.6.3 LLM Prompt Engineering with Real Customer Data

• Improvement: Develop sophisticated prompts using actual user search patterns and
feedback

• Benefits: More contextually aware result reranking
• Implementation Challenge: Privacy concerns and data collection complexity

3.6.4 Managed Vector Database Migration

• Improvement: Transition to Pinecone or similar managed vector database services
• Benefits: Reduced operational overhead, better scalability, advanced features
• Implementation Challenge: Migration complexity and ongoing costs
• Cost-Benefit Analysis: Higher operational costs but reduced engineering overhead

4 Conclusion and Recommendations

We have developed a fast and scalable multimodal search engine that allows users to retrieve
relevant products using text, image, or hybrid queries. In contrast to Finly’s original plat-
form, which relies on direct keyword matching, our system is built to understand the semantic
meaning of natural language and handle complex queries effectively. Even with the most com-
putationally intensive model, the system maintains a response time under 5 seconds, meeting
the usability standards for customer-facing applications.

To achieve this, we integrated multiple models and tools. For multimodal capability, we
leveraged CLIP (Radford et al. 2021) to extract features from both text and images. To
capture semantic information, we incorporated MiniLM (Face 2024) along with an LLM-based
reranking module (OpenAI 2023). To ensure low latency, we implemented FAISS indexing
(Johnson, Douze, and Jégou 2017) for efficient similarity search. Additionally, we adopted
Google Cloud for data storage to meet the scalability requirements.

In our performance evaluation on a dataset of one million products, the system achieved a
Recall@20 of 0.56, Precision@20 of 0.64, and an average search time of 4.24 seconds. These
results demonstrate that our search engine is both accurate and responsive.
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4.1 Recommendations

Our product successfully met all of Finly’s requirements. We also developed a web interface
that presents a statistical summary of the retrieved results and integrated a modular evaluation
framework for our partner. However, several limitations of the current system should be
noted.

• Evaluation limitations: The precision evaluation was based on the manual annotation
of the top 20 retrieved products by our team. Given our limited domain expertise in
e-commerce and the subjective interpretation of what constitutes a “relevant” product,
the labeling may suffer from inconsistency and potential bias. To improve reliability, we
recommend involving an e-commerce expert to standardize annotation guidelines and
ensure a more professional and consistent evaluation process.

• Scalability and infrastructure: Currently, our reranking module is applied only to
the top 30 retrieved products due to its relatively long execution time. We did not con-
duct experiments to determine the optimal cutoff threshold that balances performance
and latency, primarily due to time and resource constraints. However, we believe that
implementing an adaptive cutoff strategy could be a valuable direction for future en-
hancement.

Additionally, due to limited computing resources, we generated embeddings for only one
million products, rather than the entire product catalog. This limitation can be easily
addressed by rerunning our reproducible indexing pipeline once Finly gains access to
sufficient computational infrastructure.

• Data constraints: Due to the absence of labeled customer interaction data, our current
similarity search relies solely on fusion embeddings of text and image inputs, without
any model fine-tuning. Prior academic research (Liu and Lopez Ramos 2025) suggests
that adding a projection layer on top of the fusion embedding can improve performance.
Once Finly acquires sufficient labeled data, the pipeline can be adapted to include such
a layer along with an appropriately designed loss function.

Despite the limitations discussed above, our solution offers FinlyWealth a robust, scalable
architecture and a reproducible development pipeline. This positions the company well to
scale the system further and adapt it to the growing and evolving needs of its e-commerce
platform.
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Appendix

Tools and Libraries

Library Purpose in Project
NumPy Efficient numerical operations, especially for vector manipulation and math

ops.
Flask Lightweight web framework used for rapid prototyping of API endpoints.
FAISS Approximate nearest neighbor search for CLIP embeddings; enables fast

vector search.
Hugging Face Access to pretrained models like CLIP; used for text and image embedding.
Pillow Image processing library used for resizing, normalization, and format

conversion.
spaCy Natural language processing toolkit for tokenization, NER, and text

normalization.
Pinecone Scalable, cloud-based vector database for fast and persistent similarity

search.
PostgreSQL Relational database to store Embeddings. Allows for multiple columns to

have ebeddings

Definitions

CLIP: Generates embeddings for both text and images, mapping them into a shared em-
bedding space. We are not training any embedding model, instead we use off-the-shelf CLIP
models to generate embeddings.

Embedding Generation: The preprocessed query is then transformed into a numerical
representation (an embedding) that captures its semantic meaning.

FAISS (Facebook AI Similarity Search) is a library that allows developers to quickly search for
embeddings of multimedia documents.Enables efficient approximate nearest neighbor search
over embeddings.

TF-IDF: A numerical statistic used to evaluate the importance of a word in a document
within a collection of documents
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